Calcium-controlled conformational choreography in the N-terminal half of adseverin

نویسندگان

  • Sakesit Chumnarnsilpa
  • Robert C. Robinson
  • Jonathan M. Grimes
  • Cedric Leyrat
چکیده

Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca(2+)-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca(2+)-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca(2+)-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca(2+)-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The crystal structure of the C-terminus of adseverin reveals the actin-binding interface.

Adseverin is a member of the calcium-regulated gelsolin superfamily of actin severing and capping proteins. Adseverin comprises 6 homologous domains (A1-A6), which share 60% identity with the 6 domains from gelsolin (G1-G6). Adseverin is truncated in comparison to gelsolin, lacking the C-terminal extension that masks the F-actin binding site in calcium-free gelsolin. Biochemical assays have ind...

متن کامل

The Ca2(+)-dependent actin filament-severing activity of 74-kDa protein (adseverin) resides in its NH2-terminal half.

Calcium sensitive actin severing protein, adseverin, with Mr 74,000, was cleaved into two fragments of Mr 42,000 and Mr 39,000 by V8 protease and trypsin, and both fragments were purified by high performance (pressure) liquid chromatography ion-exchange column chromatography. To understand how adseverin can sever actin filaments, we identified the actin-binding domains. The NH2 termini of nativ...

متن کامل

Key Insights into the Activation of Gelsolin Superfamily of Proteins

The gelsolin superfamily of proteins is implicated in actin remodeling involved in cell motility. In vertebrates, the family includes seven different proteins, namely, gelsolin, adseverin, advillin, villin, supervillin, flightless I and capG. They regulate cytoskeletal organization by severing, capping, bundling and nucleating actin filaments. The proteins comprise of three or six homologous ge...

متن کامل

Conformational Study of some novel Methoxy Half-Analogues of Michler’s Ketone by NMR

One series of half-analogues of Michler’s ketone containing one or more terminal methoxysubstituents with variable tertiary amino groups have been used in this study. NMR spectralresults for the parent ketones confirm earlier findings that ortho proton shifts are apparentlyindependent from steric effects in derivatives of Michler’s ketone because the ring current andcarbonyl-induced shifts are ...

متن کامل

Conformational States and Kinetics of the Calcium Binding Domain of NADPH Oxidase 5

Superoxide generated by human NADPH oxidase 5 (NOX5) is of growing importance for various physiological and pathological processes. The activity of NOX5 appears to be regulated by a self-contained Ca(2+) binding domain (CaBD). Recently Bánfi et al. suggest that the conformational change of CaBD upon Ca(2+) binding is essential for domain-domain interaction and superoxide production. The authors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015